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The upsurge of global population, which is 
expected to hit 9.6 billion by 2050 calls for the 
food security in the future (Singh and Prasad 
2016). The potential yield of the agricultural 
crops is obstructed by many factors such as 
insufficiency of arable land, climate change 
and different biotic and abiotic stresses. 
Among biotic stresses, insect pests cause a 
considerable amount of loss of annual turnover 
from crops. Some examples of notorious crop 
insect pests are given in Table 1. The damage 
can occur in the pre-harvest stages or post-
h a r v e s t  p h a s e  ( O e r k e  2 0 0 6 ) .  T h e  
morphological and physiological traits, higher 
reproductive ability, polyphagous nature and 
fast rate of evolution to resistant biotypes 
confer success to the establishment of the 
insects as pests (Mamta and Rajam 2017). The 
control strategies mainly rely upon the manual 
methods by picking and trapping of the insects 
or the use of chemical insecticides. The first 
one has severe limitations and can be applied 
over a small area only and latter has significant 
negative impact on the environment and 
human health. Plant breeding approaches have 
also marked their places in the crop 
improvement but has constraints of being 
labour intensive and time consuming and lack 
of resistance source in some cases. 
Therefore, an imperative call to look for the 

alternative strategies to develop insect 
resistance and concomitant yield improvement 
was needful. Recombinant DNA technology, 
comes to a rescue by the advent of genetic 
engineering and transgenic approaches. In 
recent years, insect resistant crops expressing 
δ - endo tox in s  genes  f rom Bac i l l u s  
thuringiensis have been developed and 
remarkably changed the global agricultural 
scenario. However, insects have been shown to 
develop resistance against such insecticidal 
proteins over the course of time, which limits 
the success of Bt technology. The ideal pest 
control strategy should be precise, effective, 
economical and environment friendly. RNA 
interference (RNAi), phenomenon was 
discovered  by Fire et al. (1998), where the 
dsRNA-mediated gene s i lencing in  
Caenorhabditis elegans was demonstrated. 
RNAi involves the silencing of an essential 
gene of the target organism in a highly 
sequence-specific manner at the post-
transcriptional level. This strategy is being 
used as a novel alternative approach for insect 
pest management in different crops (Kola et al. 
2015, Yu et al. 2016, Mamta and Rajam 2017). 

Genetic engineering strategies and their 
limitations for insect resistance in crop 
plants: Some plants are found to be naturally 

Worldwide, insect pests cause extensive damage to the economically important crops. With the advancement of genetic engineering 
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resistant to a broad group of insects. 
Investigations have suggested the presence of 
several substances which play an important 
role as a part of defence mechanism in plants. 
These compounds have been explored by the 
scientific communities to generate transgenic 
plants to impart resistance against the pest 
population using genetic engineering 
technologies.
Resistance to insects has been achieved by 
inserting the genes of B. thuringiensis, which 
encode for  crystal proteins (Cry proteins). 
Upon intake, these protoxins become activated 
by intestinal proteases to form active toxins and 
recognize the binding site on the midgut 
membrane surface. Consequently, pores are 
formed on the epithelial membrane leading to 
cell lysis and death of the insects (Soberón et al. 
2007; Deist et al. 2014). The genetically 
modified GM) or transgenic plants expressing 
Bt toxins were grown commercially in 1996 
(James 2004) and since then significant 
advancement has taken place in order to obtain 
insect resistance. The continuous expression 
and effectiveness against a vast array of insects 
made this technology a popular choice for the 
farmers. Cry1A family of Bt toxins has been the 
mostly used, several crops including cotton, 
maize, tomato, soybean, potato, brinjal, etc. 
expressing Cry proteins have been generated so 
far (Sheikh et al. 2017). Report on resistance 
against Bt protein was first reported in 2005 
and since then population of 5 out of 13 major 
insect species have been reported to exhibit 

resistance (Tabashnik et al. 2013). Rapid 
evolution of insects to impart resistance to 
insecticide is the anticipated possibility behind 
the resistance towards Cry toxins.
In addition to Cry proteins, a number of other 
insecticidal toxins are secreted by B. 
thuringiensis. For example, vegetative 
insecticidal protein (VIP) is also being used to 
engineer cotton plants for insect resistance 
(Estruch et al. 1996). The mode of action of 
VIPs is different as compared to Cry proteins, 
and Cry1Ac-resistant strains of Heliothis 
virescens have been shown to be susceptible to 
VIP3A (Jackson et al. 2007). 
Protease inhibitors (PIs) are a group of 
naturally occurring plant substances which 
play a role as a defence mechanism against 
insect herbivory. The exploration of the 
insecticidal properties of PIs led to the 
production of first transgenic soybean plants 
expressing PIs (Hilder et al. 1987), following 
that a number of transgenic crops have been 
generated expressing this group of insecticidal 
proteins (Reviewed by Malone et  al. 2008).
Alpha- amylase inhibitors are another group of 
plant defence molecules, reported to interfere 
with the ability to digest starch in insects 
(Franco et al. 2002). Legumes have been 
particularly exploited to express this class of 
proteins to confer resistance against a number 
of weevils (Shade et al. 1994; Schroeder et al. 
1995; Ishimoto et al. 1996; Sarmah et al. 
2004). It has been shown that the expression of 
α- amylase inhibitor from legume to non-
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Insect pest Order Affected crops 

Helicoverpa armigera Lepidoptera Cotton, tomato, pigeonpea, chickpea, 
maize, okra 

Nilaparvata lugens Hemiptera Rice 
Bemisia tabaci Hemiptera Cotton, tomato, okra, brinjal, beans 
Plutella xylostella  Lepidoptera Cabagge, cauliflower, broccoli 
Sitophilus oryzae Coleoptera Rice, wheat, maize 
Chilo suppressalis Lepidoptera Rice 
Rhopalosiphum maidis Hemiptera Barley, wheat, rice 
Sitobion avenae Hemiptera Wheat 
Sesamia inferens Lepidoptera Wheat, maize 
Leucinodes orbonalis Lepidoptera Brinjal 
Spodoptera sp. Lepidoptera Okra, cauliflower, cabbage, pigeonpea, 

beans, cotton and several other vegetables 
Maruca vitrata Lepidoptera Cowpea, pigeonpea, soybean and several 

other vegetables 

 

Table 1: Examples of some of the major insect pests of economically important crops



legume plant confers resistance against insect 
pest (Barbosa et al. 2010). 

Biotin binding proteins (BBPs) such as avidin 
and streptavidin from chicken egg white and 
Streptomyces avidiniii respectively, have been 
shown to be toxic against a wide range of 
insects (Markwick et al. 2001). Following the 
discovery, a number of transgenic plants such 
as rice, tobacco, maize, apple, potato, etc. have 
been developed expressing BBPs (Yoza et al. 
2005; Burgess et al. 2002b, Kramer et al. 2000; 
Markwick et al. 2003; Meiyalaghan et al. 
2005). 
Though, the above mentioned strategies are 
promising but still associated with some 
limitations. Plants expressing Bt toxins have 
been shown to be successful against vast 
majority of lepidopteran pests but is found to be 
ineffective against other insect orders, viz. 
coleoptera, hemiptera (Gatehouse and Price 
2011). PIs play major role in achieving insect 
resistance but there is no report of 
commercialization till date (Rajam and 
Yogindran 2018). A better understanding of the 
underlying mechanisms in the above 
mentioned strategies holds the possibility to 
achieve crop yield improvement by controlling 
insect pests.

Small RNAs: Biogenesis and functions
Over the years, small RNAs (sRNAs) have 
been recognized as an important group of 
regulatory elements involved in the regulation 
of gene expression. sRNAs are broadly 
classified into two classes namely small 
interfering RNAs (siRNAs) and microRNAs 
(miRNAs). Though they are more or less 
structurally similar (20-24 nts) but differ in the 
process of biogenesis and mode of action. 
siRNAs are derived from long double-stranded 
RNAs (dsRNAs) and play the role in target 
mRNA cleavage in response to foreign nucleic 
acids such as invading RNA viruses, 
transgenes, endogenous repeat elements and 
transposons (Zamore 2002, Finnegan and 
Matzke 2003). On the other hand, miRNAs are 
endogenous transcription products which are 

highly conserved across diverse species and 
control the endogenous gene expression 
(Vaucheret et al. 2004). Dicer and Argonaute 
(AGO) proteins are the core components of the 
RNAi pathway, although many other proteins 
are involved in the process. Both siRNAs and 
miRNAs are generated from precursor 
molecules by Dicer, a RNase III enzyme. The 
double-stranded siRNAs and miRNAs, then 
get associated with RNA induced silencing 
complex (RISC), Argonaute and other effector 
molecules leading to the target mRNA 
cleavage or repression of translation (Figure 
1). 
Movement of plant sRNAs occurs in two ways: 
cell-to-cell and systemic movement (Melnyk et 
al. 2011). The first of movement is symplastic 
and takes place by plasmodesmata (Lough and 
Lucas 2006) and long-distance systemic 
movement takes place via vascular phloem 
tissue and eventuates in several days (Voinnet 
et al. 1998). The success of RNAi in different 
orders of insects has confirmed that the insect 
cells are capable of dsRNA uptake. In C. 
elegans, two proteins namely SID-1 (Systemic 
RNAi defective-1) and SID-2 have been 
identified to be involved in the process of 
dsRNA uptake and systemic RNAi. SID-1 is 
essential and play role in the spread of RNAi 
signals across cells and SID-2 acts in 
association of SID-1 and is gut specific 
(Winston et al. 2002, 2007). Orthologs of sid 
genes have been identified in a number of 
insect species belong to different orders 
(Reviewed by Huvenne and Smagghe 2010). 

siRNAs 
They are derived from dsRNAs or hp-RNAs 
and Dicer enzyme processes this dsRNA into 
siRNA molecules. siRNAs are generally short, 
with 5'-phosphorylated dsRNAs and 2 nt 
overhangs at the 3' end(Bernstein et al. 2001). 
siRNA- induced silencing complex (siRISC) is 
activated by the accumulation of many other 
proteins to form the RISC-loading complex 
(RLC) (Carthew and Sontheimer 2009). AGO 
protein gets recruited to form pre-RISC 
complex and capable of binding to the dsRNAs 
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(Kim et al. 2007). Degradation of the passenger 
(sense) strand takes place to form functional 
RISC. The guide (antisense) strand then directs 
the cleavage of the targeted mRNA leading to 
post-transcriptional gene silencing (PTGS). 
AGO is an important component of the active 
RISC complexes. PIWI domain of the AGO 
protein induces the process of mRNA 
degradation (Figure 1). Ten different ago genes 
have been reported to participate in the process 
of RNAi. The effector phases of siRNA-
mediated silencing are reported to occur in the 
cytoplasm. 
miRNAs
miRNAs are found in eukaryotic organisms 
and are encoded by a diverse array of genes. 
miRNAs are transcribed by RNA polymerase II 
into primary miRNAs (pri-miRNAs) having a 
hairpin loop structure. Next, the pri-miRNAs 
are cleaved by a member of RNase III family 

(DCL1 in plants and Drosha in animals) to 
produce pre-miRNAs and mature miRNA 
duplex (miRNA/miRNA*)(Kim 2005).These 
steps occur in the nucleus and the mature 
miRNA duplex exported to cytoplasm for 
further processing. The export is mediated by 
HASTY (an ortholog of exportin-5 protein). 
The mature miRNA duplex then loaded onto 
RISC and degradation of target mRNA takes 
place. The cleavage of the target mRNA takes 
place at the 10th or 11th nucleotide from the 5' 
end of the miRNA (Mallory et al. 2004). The 
downregulation of mRNA can occur either by 
translational inhibition or by cleavage (Figure 
1). In animals, mostly translational inhibition 
takes place by binding to the motifs in the 3' 
UTRs of the targets, containing several 
mismatches to the miRNA. However, in plants 
target motifs contain fewer mismatches and 
lead to target cleavage. In plants, miRNAs are 

 Figure 1: siRNA and miRNA biogenesis pathways in plants
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less conserved usually consist of 20–24 nts. In 
animals, it is mostly 20–22 nucleotides long 
and are highly conserved (Bartel 2004).  

RNAi- mediated silencing for developing 
insect resistant crop plants
Agronomic insect pests cause an enormous 
amount of yield loss annually. A number of 
insect genes have been tested so far for RNAi 
(reviewed by Kola et al. 2015, Mamta and 
Rajam 2017). According to the reports, 
engineered plants can produce dsRNA, which 
further direct gene silencing in the insects upon 
feeding. The advantages of dsRNA expressing 
transgenic plants are manifold, including  
heritability and stability of the structures. 
Production is continuous under the use of 
constitutive promoters for plant expression. 
Thus host-induced or plant-mediated RNAi 
technology opens up a new arena of insect pest 
control. A number of efforts have been put forth 
to develop dsRNA producing transgenic plants. 
In 2007, two independent groups reported the 
generation of transgenic plants producing 
dsRNAs targerted against insect pests. In the 
first report, transgenic Arabidopsis thaliana 
has been raised to express dsRNA targeted 
against an insect cytochrome P450 gene 
(CYP6AE14), which  resulted in retardation of 
larval growth of Helicoverpa armigera upon 
feeding (Mao et al. 2007). Cytochrome P450 
monoxygenases are present to provide 
tolerance to plant toxins like gossypol (present 
in cotton leaves) in insects. Baum et al. (2007) 
reported the RNAi-mediated knock-down of 
insect vacuolar ATPase (V-ATPase) gene of 
western corn rootworm (WCR), Diabrotica 
virgifera virgifera. Transgenic maize (Zea 
mays) lines have been generated expressing 
dsRNA against V-ATPase. Feeding assay with 
the transgenic plants on WCR larva resulted in 
stunted growth and mortality. Later on, 
CYP6AE14 of H. armigera has been targeted to 
generate transgenic cotton plants expressing 
dsRNA against CYP6AE14 (Mao et al. 
2011).Cotton plants contain gossypol, which 
acts a part of plants defence mechanism against 
herbivory but insects express a group of 

cytochrome P450 monoxygenase genes to 
catabolize such defence molecules to breach 
the anti-herbivory barrier. Down-regulation of 
CYP6AE14 by feeding on transgenic cotton 
plants was associated with retarded growth of 
cotton bollworm (H. armigera). Nilaparvata 
lugens is one the most destructive pests of rice. 
Towards the goal to combat this insect, RNAi 
technology has been applied to check the 
efficacy. Three genes, viz., hexose transporter 
(NlHT1), carboxypeptidase (Nlcar) and trypsin 
like serine protease (Nltry), have been targeted 
to develop transgenic rice to confer resistance 
against brown planthopper (N. lugens) (Zha et 
al. 2011). Feeding on transgenic plants 
demonstrated significant amount of reduction 
in the transcripts of these midgut genes but 
lethal phenotypic deformity has not been 
observed. Sufficient up-take of dsRNA, 
optimal RNAi penetrance, choice of genes are 
some of the major factors to be taken into 
account to achieve the maximum RNAi effects 
(Terenius  et al. 2011, Zha et al. 2011). An 
ecdysone receptor gene of N. lugens was 
targeted to generate transgenic rice, where 
feeding on transgenics showed decreased 
fecundity due to reduction in target gene 
expression (Yu et al. 2014). Receptor of 
Activated Kinase C (Rack-1) and MpC002 
genes have also been targeted in another aphid, 
Myzus persicae by raising transgenics, feeding 
on dsRNA expressing A. thaliana exhibited 
knock-down of the targeted genes and 
concomitant reduction in number of insect 
progeny (Pitino et al. 2011). Transgenic 
tobacco plants  expressing dsRNA against a 
n u m b e r  o f  g e n e s  i n c l u d i n g  2 0  
Hydroxyecdysone, transcription factor HaHR-
3), chitin synthase, cytochrome P450 
monooxygenase and v-ATPase genes were 
generated to examine the potential of RNAi on 
H. armigera (Zhu et al. 2012, Xiong et al. 
2013; Jin et al. 2015). More recently, a non-
midgut gene, chitinase of H. armigera has been 
targeted through host-induced gene silencing 
(HIGS) for the control of tomato fruit worm 
(Mamta et al. 2016). Transgenic tomato and 
tobacco plants were raised to express dsRNA 
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Table 2: Plant-mediated RNAi for insect pest control

RNAi plant Target insect Target gene Effects References 

Arabidopsis thaliana Helicoverpa 
armigera 

Cytochrome 450 monooxygenase 
CYP6AE14 

Reduced tolerance to 
gossypol and retarded 
larval growth 

Mao et al. (2007) 

Zea mays Diabrotica 
virgifera virgifera 

Vacuolar ATPase (V-ATPase) Stunted larval growth 
and mortality 

Baum et al. (2007) 

Gossypium hirsutum H.  armigera Cytochrome 450 monooxygenase 
CYP6AE14 

Retarded larval growth 
and enhanced resistance 
against the insect 

Mao et al. (2011) 

Oryza sativa Nilaparvata 
lugens 

Hexose transporter gene NlHT1 
 
Carboxypeptidase gene Nlcar  
 
Trypsin like serine protease gene 
Nltry 

Reduction in target gene 
transcript in the midgut 
but no lethal phenotype 
observed 

Zha et al. (2011) 

A. thaliana  
 
Nicotiana benthamiana 

Myzus persicae Receptor of Activated Kinase C 
(Rack-1) and MpC002 

Reduction in number of 
progenies 

Pitino et al. (2011) 

Nicotiana tabacum H.  armigera 20-hydroxyecdysone (20E) Defective molting and 
lethality in larva 

Zhu et al. (2012) 

A.  thaliana  
 

Myzus persicae  Serine protease  Reduced fecundity Bhatia et al. (2012) 

N.  tabacum H.  armigera Molt-regulating transcription 
factor HaHR3 

Larval deformity and 
lethality  

Xiong et al. (2013) 

O.  sativa N. lugens Ecdysone receptor (EcR) Reduction in number of 
offsprings 

Yu et al. (2014) 

N.  tabacum Bemisia tabaci V-ATPase subunit A (V-
ATPaseA) 

Mortality in insects Thakur et al. (2014) 

Triticum aestivum Sitobion avenae Carboxylesterase (CbE E4)  Impairment of larval 
tolerance to Phoxim 
insecticides 

Xu et al. (2014) 

N.  tabacum H.  armigera Cytochrome 450 monooxygenase 
CYP6AE14 
 
V-ATPase A 
 
Chitin synthase B  

Reduction in larval 
growth and pupation  

Jin et al. (2015) 

Hordeum vulgare Sitobion avenae Structural sheath protein (SHP) Reduced growth and 
rate of survival 

Abdellatef et al. 
(2015) 

N.  tabacum 
 
Solanum lycopersicum 

H.  armigera Chitinase Developmental 
deformities and reduced 
survival 

Mamta et al. (2016) 

N.  tabacum 
 

Bemisia tabaci Acetylcholinesterase (AChE)  
 
Ecdysone receptor (EcR) 

Mortality in adult flies Malik et al. (2016) 

Solanum tuberosum Leptinotarsa 
decemlineata 

Ecdysone receptor (EcR) High rate of mortality  Hussain et al. 
(2019) 
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against chitinase gene of cotton bollworm (H. 
armigera) and 1.5–6.2 fold down-regulation in 
the transcripts of the targeted gene was 
observed, which led to insect developmental 
deformity and mortality (Mamta et al. 2016). 
The potential use of serine protease gene was 
explored by Bhatia et al. (2012), where A. 
thaliana transgenics were raised for the 
expression of dsRNA against serine protease 
gene for the control of M. persicae . Whitefly 
(Bemisia tabaci) is another serious insect pest 
of a diverse group of crop plants. It not only 
causes damage by ingestion but also play a role 
in transmission of several viral diseases. 
Recently, v-ATPase, acetylcholinesterase and 
ecdysone receptor have been targeted through 
transgenic tobacco plants and insect feeding 
assays exhibited reduction of B. tabaci growth 
and fecundity (Thakur et al. 2014, Malik et al. 
2016). Carboxylesterases are a group of 
enzymes, widely distributed in microbes, 
plants and animals and play an important role in 
detoxification of insecticides. CbE E4 is one 
such gene, associated with hydrolysis of 
organophosphate insecticides. Xu et al. (2014) 
cloned CbE E4 from Sitobion avenae and 
generated RNAi transgenic wheat, which 
showed reduction in target gene expression 
along with stunted growth of the target insect 
after feeding. Interestingly, siRNAs have found 
to be transported from phloem to intestinal 
tissues via stylet of aphids (S. avenae). Sheath 
protein of S. avenae has also been targeted by 
developing transgenic barley plants, and down-
regulation of the sheath protein gene has been 
shown to affect feeding and survival rate of the 
aphids (Abdellatef et al. 2015). Moreover, 
RNAi has found to be transmitted through 
several generations though weakening of 
silencing was observed across the generations 
(Abdellatef et al. 2015). More recently, 
Hussain et al. (2019) developed transgenic 
potato expressing dsRNA against ecdysone 
receptor gene of colorado potato beetle 
(Leptinotarsa decemlineata), and up to 80% 
mortality was achieved with significant growth 
retardation. The work on HIGS for the control 
of crop insect pests is summarized in Table 2.

Artificial microRNAs (amiRNAs)
The amiRNAs are designed by replacement of 
miRNA/miRNA* duplex in an endogenous 
miRNA precursor, with a sequence which is 
complementary to a target gene of interest 
intended for silencing, and the endogenous 
miRNA processing machinery is used for the 
generation of amiRNAs (Tiwari et al. 2014; 
Yogindran and Rajam 2016). The biogenesis of 
new precursor is not hampered as long as the 
hairpin loop structure remains intact (Sablok et 
al. 2011). This concept was validated by the 
development of transgenic A. thaliana through 
the manipulation of precursor miR159 to 
express amiRNAs for targeting viruses (Niu et 
al. 2006). The amiRNA technology is said to be 
the second generation RNAi and holds on to 
several advantages over hpRNAi, such as 
minimal off-target effects and high precision. 
Moreover, the easy optimization of amiRNA 
sequences to target one or several desired 
mRNAs without affecting the expression of 
other genes is another added advantage  
(Schwab et al. 2006; Ossowski et al. 2008). 
amiRNAs are being exploited for targeting 
insect pest genes for their control in crop plants 
(Yogindran 2017; Yogindran and Rajam 2016).

amiRNAs-mediated insect resistance in 
plants 
After the tremendous success of miRNA-
mediated silencing for crop improvement, the 
use of amiRNAs to generate transgenic crops 
for resistance against different biotic stresses 
has also been explored. A handful of reports 
about targeting insect physiological and 
endocrinological processes through amiRNAs 
are available. After the identification of miR-
24 which targets the chitinase gene of H. 
armigera effectively and subsequent 
disruption of molting process (Agrawal et al. 
2013), miR-24 was used to raise tobacco 
transgenics to check the effect on H. armigera 
upon feeding, which led to cessation of molting 
and larval death. (Agrawal et al. 2015). A 
natural pre-miRNA of Solanum lycopersicum 
(Sly-miR-159) was used as a backbone and 
miRNA duplex was replaced by custom 
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synthesized miR-24 to generate amiR-24 and 
cloned in binary expression vector under the 
control of constitutive CaMV35S promoter 
with an enhancer. The amiRNA-24 construct 
was used to develop transgenic tomato and 
used for insect feeding, which resulted in 
stunted growth, disrupted molting and 
mortality of  H. armigera larva. Moreover, this 
was shown to be highly specific for the 
particular insect and did not affect other insects. 
Acetylcholinesterase (AChE) has been proven 
to be a good target for insect pest control 
(Kumar et al. 2009). This enzyme hydrolyses a 
neurotransmitter, acetylcholine which acts in 
the process of transmission of nerve impulse 
and targeting AChE shown to disrupt the 
process of neurotransmission and paralysis and 
death of the organisms. AChE of M. persicae 
has been targeted via transgenic tobacco plants, 
which were generated by using two amiRNA 
constructs (Guo et al. 2014). The CaMV 35S 
promoter has been used to drive the expression 
of amiRNAs in plants and feeding on which 
demonstrated a significant down-regulation of 
AChE and proved the significance of amiRNA-
based approach in aphid control. Chilo 
suppressalis is one of the major pests of rice, 
causes extensive damage. amiRNA technology 
has been applied to confer resistance to rice 
against this insect pest where 13 novel insect 
endogenous miRNAs have been over-
expressed to check the efficacy (Jiang et al. 
2017). Among the miRNAs selected, 
transgenic rice over-expressing csu-novel-
miR15 and csu-novel-miR53 demonstrated 
maximum RNAi effects. More recently, He et 
al. (2019) reported the development of 
transgenic rice expressing amiR-14 under the 
ubiquitin promoter. The feeding of larvae of 
Chilo suppressalis on transgenics exhibited 
significant developmental deformities and 
mortality. An insect-specific miRNA, Csu-
miR-14, which targets two genes, i.e., CsSpo 
and CsEcR, involved in the ecdysone signalling 
pathway of the insect was used to examine its 
effects (He et al. 2019). Interestingly, plant-
expressed insect pre-amiRs (plin-amiRs), a 
new strategy of insect pest control has been 

reported by Bally et al. (2020). A segment of 
insect pre-miR sequences has been replaced 
with sequences that target an insect gene, 
Acetylcholinesterase 2, in H. armigera and this 
was cloned in a plant expression vector to 
transform Nicotiana benthamiana. Insect larva 
showed notable developmental delay and 
mortality upon feeding of tobacco leaves. 

Conclusions and future prospects
Over the past two decades, RNAi has emerged 
as a promising tool in the area of insect pest 
management. Extensive studies have 
demonstrated the effectiveness of this 
technology in insect gene silencing. The 
breakthrough studies by Mao et al. 2007 and 
Baum et al. 2007 showed a new way of insect 
pest control by generation of transgenic plants 
to express small RNAs to be fed by insects. 
With the advancement of second generation 
sequencing technology, better understanding 
of insect genome study could pave the way to 
the innovations of more efficient control 
strategies. As there is no expression of 
transgene proteins, so there is no extra 
metabolic load on protein synthesis in 
transgenic plants which is an advantage of 
RNAi along with its high specificity. Off-target 
effect is a serious limitation of this technology, 
which can lead to the unintended silencing of 
the related genes in beneficial organisms. 
Besides that tissue-specific expression of 
siRNAs is not possible because of the systemic 
spread nature of this group of small RNA 
molecules. Artificial miRNA technology 
exhibits to overcome this problem. This 
technology shows up to be as effective as 
siRNA-mediated silencing but with minimal 
off-target effects. amiRNAs are suggested to 
deliver enhanced silencing when expressed 
under strong promoters. Till date, only 
conventional promoters have been used to raise 
transgenics. Exploration of other constitutive, 
tissue and developmental stage specific 
promoters holds the possibility towards more 
effective silencing.  Though a handful of 
studies demonstrated the promising nature of 
these technologies but these are mainly 
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restricted to the model plants. Application on 
plants of commercial interest is needed in order 
to assess the efficacy. Substantial studies on 
risk assessment are required to overcome the 
regulatory barriers and GM related concerns 
among public. Commercialization of the 
insect-resistant GM crops is needed to meet the 
food demand in the coming years. It is also 
noteworthy for the scientific communities to 
look for credible diagonostic tools for the 
detection and quantification of small RNA 
molecules in the vicinity. These tools are 
preferred to be cost-effective, functional at 
field level and should be capable of detection in 
low amount with high specificity (Auer and 
Frederick 2009). A better understanding of the 
mechanism in depth along with addressing the 
bio safety concerns can lead to the successful 
application of this technology for crop 
improvement and human welfare in the near 
future.
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